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Material symmetry optimization by Kelvin modes
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Abstract. Pointwise optimization of the material symmetry of an anisotropic elastic material with respect to fixed
and specified stress (or strain) states is accomplished. The conceptual variables in this problem are the type of
material symmetry and the orientation of the canonical symmetry axis for the material at a point in the material.
The actual variables are the coefficients of the elasticity (or compliance) matrix. The results are presented in
the form of the elasticity (or compliance) matrices that minimize the strain energy with respect to specified, but
arbitrary, stress (or strain) states.
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1. Introduction

In the design of plant and animal tissue it is clear that nature employs strategies that ‘optimize’
in some sense the microstructure of the material, and hence its material anisotropy. To see this,
one has only to reflect on the grain and fibrous construction of wood and how it is loaded when
in a living tree, primarily by wind. Man would like to emulate this design process for structural
materials. There now exist ways to manufacture materials with specific microstructures and
thus enjoy the benefits of matching the material to the details of the anticipated applied load.

We address here the question of optimizing the material symmetry of an anisotropic elastic
material with respect to fixed and specified stress (or strain) states. The conceptual variables in
this problem are the type of material symmetry and the orientation of the canonical symmetry
axis for the material at a point in the material. The actual variables are the coefficients of the
elasticity (or compliance) matrix.

When this work was done it was thought to be different from previous work in that here
we tried to select both the type of material symmetry and the orientation of the canonical
material symmetry axes to minimize the strain energy with respect to fixed or given design
stresses (or strains). A referee brought our attention to the work of Beptiai¢l, 2] that
addresses the same problem using a different approach. The Bextddowork [1, 2] was
done in the context of optimal structural design and has interesting points of similarity and
contrast with the present work. The similarity is mainly in the statement of the problem and
in some of the results. The differences are in the method of proof, glahadbcally posed
problems, and in the imposition of cost constraints. The optimal structural design approach
used in [1, 2] is a global approach that imposes constraints to account for the cost of the
material employed in the design. The cost constraints, while logical, are subjective and non-
unique. The present work is a local, traditional, extremum seeking, calculus approach and
imposes no design constraints. The cost constraint in the global approach leads to a paradox
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Table 1. The elasticity and compliance in different notations. Column 1 illustrates the Voigt notation

of these quantities as fourth rank tensor components in a three-dimensional Cartesian space. Column 2
represents the Voigt matrix or double index notation. Column 3 illustrates the Kelvin-inspired notation for
these quantities as second rank tensor components in a six-dimensional Cartesian space.

1 2 3 1 2 3 1 2 3 1 2 3
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of [1] that requires zero shear moduli in the optimized material elasticity tensor. That difficulty
is avoided in the present approach. The results and methods of [1, 2] will be compared with
the present results in the text that follows and again in the discussion.

The results in this paper are obtained by a representation of the stress-strain relations due,
in principle, to Kelvin [3, 4]; see [5]. In the Kelvin formulation a six-dimensional spectral
representation is employed to represent the elasticity tensor or the compliance tensor. It is
described in the following section. The eigenvalues and eigenvectors of the spectral represent-
ation are called the Kelvin eigenvalues or Kelvin moduli and Kelvin eigenvectors, respectively.
The Kelvin eigenmodes are of two type&impleKelvin eigenmodes of a particular material
symmetry contain no coefficients depending on the elastic constants,didtiibutor Kelvin
eigenmodes do. The eigenmode coefficients depending on the elastic constants adésealled
tributors to indicate their role in proportioning an eigenmode. It is the distributor eigenmodes
that permit the proportioning of the material to the applied stress (or strain) states. The Kelvin
eigenmodes and moduli for the crystalline symmetries are recorded in Appendix A.

The method employed here optimizes not only with respect to the canonical symmetry axis
for the material, but also with respect to the type of material symmetry. It is the Kelvin mode
matching that permits the optimization with respect to the type of material symmetry. This
is described in the third section where the minimization process is accomplished by finding
the elastic symmetry with the set of Kelvin modes that minimizes the energy for fixed, but
arbitrary Kelvin moduli and a set of specified strain (or stress) states. In Section 4 this result
is specialized to the case of finding the optimum elastic symmetry for a material that is to be
subjected to one particular stress or strain state. Using these results we construct the elasticity
matrix that minimizes the strain energy with respect to a single strain (stress) state in Section
5. The results are discussed in Section 6.



Material symmetry optimization by Kelvin mode29

Table 2. Classification of the elastic coefficients for the various anisotropic symmetries.

SYMMETRY Number of Number of Numberof Number of Number of

distinct distinct distributors  simple distributor
constants eigenvalues eigenmodes  eigenmodes

Triclinic 18 6 12 0 6

Monoclinic 12 6 6 2 4

Orthotropic 9 6 3 3 3

Tetragonal 6 5 1 3 2

Trigonal 6 4 2 0 6

Hexagonal 5 4 1 2 2

Cubic 3 3 0 3 0

Isotropic 2 2 0 2 0

2. Atensorial presentation of the Kelvin formulation

The anisotropic form of Hooke’s law is often written in indicial notation7gs= Cjjm Exn
where theC; i, are the components of the elasticity tensor. Written as a linear transformation
in six dimensions, Hooke’s law has the representalica CE or

T, 11 €12 €13 C14 Ci5 Cip Eq11
Ipy) Cl2 €22 €23 C24 C25 Co26 E2
T3 | | c13 €23 €33 (34 €35 C36 E33 1)
Tos | | c1a caa c3a cas cas cas 2E>3
T3 €15 C25 (35 C45 Cs5 Csp 2E13
| Tio | [ ci6 c26 c36 cas Cs6 Ce6 | | 2E12 ]

in the notation of Voigt [6]. The relationships of the component€’gf,, to the components

of the symmetric matrix are given in Table 1. Introducing new notation, (1) can be rewritten
in the formT = &E, where the shearing components of these new six-dimensional stress
and strain vectors, denoted B’yandE respectlvely, are multiplied by/2, and¢ is a new
six-by-six matrix [7]. The matrix form off =¢Eis given by

[ T ] [ cn €12 i3 V214 N2015 V257 T E11 ]
T2 €12 €22 c23 N2 25 20 E>
T33 _ €13 €23 ez N2c3 23 236 E33 @
\/§T23 - \/5014 «/5024 «/5034 C44 C45 C46 2E23 '
V2T15 V2ci5 N2 235 Ca5 Cs5 Cs6 2E13
B V2T, _ | V216 V2026 N2c3s  cas Cs6 ce6 | L 2E12

The matrix¢ is called the matrix olastic coefficientsind its inverse, E = &T, 8= ¢ 1is
called thecompliancematrix. A chart relating these various notations for the specific elastic
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coefficients is given in Table 1. The symmetric matriéesnd s can be shown to represent

the components of a second-rank tensor in a six-dimensional space, whereas the components
of the matrixc appearing in (1) do not form a tensor [7]. The orthogonal transformation in

six dimensions is represented @( which is a second-rank tensor in six dimensions that is
directly related to an associated orthogonal second-rank tensor in three dimensions [7, 8]; thus,
the tensor transformation law féror $to a new or primed coordinate systemtis= Q¢Q7

or§ = Q7.

The eigenvalues of the matrixs) are the six numbera (1/A) satisfying the equation
€ —ADN =0(6— (1/A)DN = 0), (3)

where the vectordl represent the normalized eigenvector€ ¢br §). The normalizedN are
expressed in terms of the six-dimensional strain and stress vectors by,

E=NE,T=NT|,IE?=E-E,[T2=T-T.N-N=1. (4)

Sincet (or §) is positive definite, it has six positive eigenvalues. These eigenvalues are called
the Kelvin moduliand are denoted b;,i = 1, ..., 6, and are ordered (if possible) by the
inequalitiesA; > --- > Ag > 0.

The eigensystems for various anisotropic elastic symmetries are described in Appendix
A. Since there are, at most, six distinct eigenvalues, and since the number of distinct elastic
constants exceeds six for several symmetries, the question of the role played by the other
distinct elastic constants arises. These other elastic constants areetadigcity distributors
[9, 10]. The role they play is to specify the ratios of the components for the eigenvectors
N. Geometrically they represent the ratio of relative extensions in perpendicular directions
and/or the amount of shear in an eigenmode. Since Poisson’s ratios represent the ratio of rel-
ative extensions in perpendicular directions in an axial (tensile or compressive) test situation,
there is some similarity between the two concepts. However, distributors are associated with
eigenmodes and Poisson’s ratios are associated with the axial test situation. If the eigenvector
N for a particular symmetry is independent of the particular value of the elastic constants for
that symmetry, it is said to besampleeigenmode. Thus, simple eigenmodes are independent
of the distributors. If an eigenmode is not simple, it is said to be a distributor dependent
eigenmode or, simply, a distributor eigenmode.

In the case of triclinic symmetry, the sum of the number of distinct eigenvalues and the
number of distributors equals 18; the other three parameters to make 21 are arbitrary in
the sense that they depend upon the choice of the coordinate system selected to express
the elasticity tensor, see [11] or [8]. It is known that there are 18 invariants;@f, for
triclinic symmetry and Rychlewski [9] identifies one set of these invariants as the six distinct
eigenvaluesA;,i = 1,..., 6, and the twelve distributors. The twelve distributors consist of
trN® k= 1,...,6, and tNON®ON® k = 1 ..., 6, where theN® k = 1, ...,6, are
subject to the normalization condition®NtPN® =1,k =1, ..., 6.

The results of the preceding paragraphs above show that there exist six eigentensors of
stress, denoted BY®, k = 1, ..., 6, in the six-dimensional space, or By in the three-
dimensional space, and six eigentensors of strain, denotét‘bandE®. k = 1,...,6,
respectively, which are related by the six equations

T=ME®, T=AE®, k=1...,6 (5)
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It follows that€ and$ have the representations

6 6
N . 1. N
& — (k) (k) a_ — N® (k)
c=Y MNP NG, S_ZAkN Q@ N®. (6)
k=1 k=1
The strain energyg,
T =1E.-CE=1T-¢T, ()

can be expressed in terms of strain, or in terms of stress, as

6 6

A A 1 ~ =«

25 =) AJE-N®PPand Z = A_k|T -N®P2, (8)
k=1 k=1

respectively; see [12]. It is important to observe the dualiﬂ}' endE on one hand, andand

Son the other, in this notation. A result based on the stress-strain relatientE, is easily
converted to a result based on the strain-stress reldica,sT, simply by interchangingj’

andE and¢ and$, respectively. Thus, while the results presented in this paper optimize with
respect to strain states, the results for optimization with respect to stress states are obtained
simply by interchanging the following termd: andE, ¢ and§, and A; and VA;. Such
simplicity of notation is not possible with the traditional Voigt notation.

3. The general result

The problem considered is that of finding the optimum elastic symmetry for a material that

is to be subjected to certain specified stress or strain states. The optimum is determined as
the symmetry that will yield the minimum strain energy. The minimization process will be
accomplished by finding the elastic symmetry with the set of Kelvin modes that minimizes
the energy for fixed Kelvin moduli. It is required that the strain energy be minimal for the
strain states’i“k’, J =123,...n. Aweighing factorp;, p; > 0, is assigned to each strain

state (the result for assuming stress states is exactly the same in the present notation, one only
has to interchange the relevant strain and stress notations). The weighed sum of the strain
energies is then given by

1< A
Y= EZ‘D]CUE[JEJJ. (9)
J=1
Substituting (6) in (9), we have
1 6
5=3 > MK NEND, (10)
k=1

where the definition

n
J=1
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has been introduced. The apparently innocuous transition from (9) to (10) involving the defin-
ition (11) symbolizes a different viewpoint with regard to the independent variables for the
strain energy. The form (9) is conventional and suggests that the strain is the independent
variable. The form (10) does not contain the strain explicitly because of the definition (11); it
suggests that the Kelvin eigenmodes are the independent variables. This is appropriate because
the strain (or strains) are now held fixed and the Kelvin eigenmodes are to be varied. The
eigenmodes represent mode shape and they are to be ‘fitted’ to the fixed or ‘design’ strain
state. An analogy might be drawn to tailoring a glove to fit a hand.

We seek to define a basig'?’ that is optimal for the strain states/, J = 1,2,3,...n,
weighed by the factorg,, p; > 0. In order to minimize the strain energy, an objective func-
tion v, constrained by the Lagrange multipligtiy 2)Q* contracted with the normalization
constraint conditionsV’ N = 1, is introduced:

6 6
1 A A 1 AR
(k) A7 (k) k k k
1/1:52 AvKii NV N; _EE QUNPNE —1). (12)
k=1 k=1

The condition that the first derivative of (12) vanishy/dN = 0, is

A KR = Q@@ (13)
thus

QW = A Ky NON@ (14)
and

KN = (Kiy N NOYN@ . (15)

This shows that the basi8.?’ that is optimal for the strain stateés/, J = 1,2, 3,...n,
weighed by the factorg;, is given by the eigenvectors of the symmetric maltixlefined by

(11). Inserting (14) back into the formula (10) for the strain energy, we observe that the strain
energy is equal to one-half the sum of the six Lagrange multipfifs

6
1
%= > b, (16)
k=1

Let this particular optimal basis determined from (15) be denotedfﬁff . To address

the question of whethey is a maximum or a minimum a¥”* we follow the guide to
determining the maxima and minima of constrained functions described in [13]. First, the
second derivatives af are computed and evaluatedigt’”; thus,

0%y 5 (@)# A(q)#
L S = A Ky — Qs = G, 17)
NN )
i $ N=N

The theorem of Section 89 of [13] is employed to determine if the eigenvecté&tpodduce
minima or maxima of the strain energy density. The criterion for maxima or minima in the



Material symmetry optimization by Kelvin mode$3

theorem of Hancock is based on a polynomiahiformed by setting the determinant of a
7 by 7 matrix equal to zero. The 7 by 7 matrix is constructed fi@fngiven by (17) and
the derivative of the normality constraint conditiov” N*' = 1), N\”’, evaluated at the
vanishing of the first derivativey ?”; thus,

oW oW oy o' oW o
A
. T S
oo oy oWr of' o W -0 a9
.
R
N R R# RO RL# R* 0

The theorem of Section 89 of [13] shows thiatvill have a minimum at the eigenvectif/ri(q)#
given by (15) if the polynomial irk specified by the determinant (18) is invariably positive
and a maximum if the polynomial is invariably negative.

From the developments presented above it is clear that the Kelvin mpduli= 1, . . ., 6,
are neither determined nor restricted by the analysis; only the Kelvin modes have been op-
timized. Thus, in the expression (6) for the six Kelvin moduliA;,i = 1,..., 6, are not
determined. The mathematical reason for this is clear from (10) where it can be seen that the
strain energy is linear in each of the eigenvalues; thus, the extrema in the strain energy due
to variation in the eigenvalues are determined by the end points of their domain of definition.
This domain of definition, in turn, will be determined by traditional design or manufacturing
constraints. In the optimal design approach, Bendsaé[1, 2], the cost constraints imposed
are on the sum of the six Kelvin moduli or the sum of squares of the six Kelvin moduli. It
is the cost constraint in terms of the six Kelvin moduli that leads to the paradox of [1] that
requires zero shear moduli in the optimized material elasticity tensor.

4. Optimization for one strain (or stress) state

The problem considered is that of finding the optimum elastic symmetry for a material that
is to be subjected to one particular stress or strain state. It is required that the strain energy
be minimal for the strain statg;. The optimum basi&/\’ for this case is obtained from the
expression (11) foK above by setting = 1, p; = 1, thenk;; = E;"E;‘ and placing this
representation in (15) we obtain

EXE*-N@) = (E* . N@)2N @, (19)
This result shows that, E* - N@ = 0, then

E¥ = (E*-NO)N@, (20)
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and it follows that a basis solutioN,”’ to (19) is that one mode, say.” coincide with the
normalized form of the strain staﬁ;’j,

. E¥
NO = =, (21)
£l

and the other fiveV?, ¢ = 2, 3, 4, 5, 6 be perpendicular to it,

E*-N“ =0,q =2 34,5,6. (22)
It follows then from (14) that the Lagrange multipliers are given by

Q® = A[EF2, Q@ =0, =2,3,4,5,6, (23)

and, thus, from (16), the strain energy associated with the strairﬁSTiH@iven by the simple
formula

Aq
Y = 71||E*||2. (24)

This formula is the basis of our use of the descriptive phrase ‘fitting like a glove’ to charac-
terize the relationship between the specified strain $tatand the elasticity matrix. The
formula shows that the strain energy depends upon the strain through only one unspecified
eigenvalue A ;. The result shows clearly that only one Kelvin mode is involved. This Kelvin
mode has been tailored like a glove to fit the strain dEitthat was optimized for, and it does.

The second derivatives of the objective functiprevaluated at the value &'’ for which
the first derivative vanishes are

G = AL(EFEY — |E*|8),
GP% = NJEFE!, q=2,34,586. (25)

When we substituted " in (18) and determined the polynomialirby subsequently taking

the determinant of the result, we find that the soluﬂb(ﬁ)# corresponds to a minimum in the
objective functionyr, since the resulting polynomial in

(IE* 12 +21)°=0 (26)
is invariably positive. The SOIutiOﬂBAfi(q)#,q = 2,3,4,5,6, all correspond to zero strain

energy modes.
These results are employed in the following section to obtain the explicit foititadt is

fitted like a glove to the single specified strain state

5. The elasticity matrix fitted to strain (stress) state

We will construct the elasticity matrix corresponding to the ba%j%) that minimizes the
strain energy with respect to a single strain (stress) state using the results of the previous
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section. We consider first the case in which all three principal strains of the straift State
distinct. A

(a) All three principal strains of the strain stdié are distinct.

The fact that all three principal strains of the strain statare distinct limits the possible
elastic symmetries that are compatible. The only symmetries that admit aQ;SQsmntaining
distributor eigenmodes with three components whose values are unrelated are orthotropic,
monoclinic and triclinic symmetry, see [7]. We select the greatest of these symmetries, ortho-
tropy, for this example. There would be more degrees of freedom available if monoclinic or
triclinic symmetry were selected; the advantage of orthotropic symmetric is the lesser number
of degrees of freedom. The three-dimensional coordinate system of the orthotropic symmetry
is taken as the three-dimensional principal coordinate system of the strain E&nJdre six-
dimension vectoE* is represented in the six-dimensional coordinate system corresponding to
its three-dimensional principal coordinate system; in this six-dimensional coordinate system
its components ar€-, £3, E%, 0, 0, 0). Normalizing this form oE* and using (21) we obtain
the first element of the basis,

(E:, E3, E3,0,0,0)

o _ E RO —

(27)
IE°] JED2+ B2+ (B3

and the other five elements of the basis must satisfy the orthogonality condition (22). To
simplify notation, the components Nf” are expressed in terms of two anglesand 3, thus

A A

R E} N EJ . .
NP = _E = sinp cosa, Ny = E—z = —singsina,
l - I 1E*]] (28)
S (D) E3 N = RO = §O
- B = =Ng" =N =0
*

Consistent with the selected orthotropic symmetry the other base vectors, orthogﬁ;ﬁﬁl to
are given by

N{? = cosa cosp cosh + sina sing,

NP = — sina cosp cost + cosa sind,  Ni? = —sinpg coss,

NP = NP = R2 =0,

N{® = — cosa cosp sing + sina cosb,

N{¥ = sina cosg sing + cosa siné, (29)
N =singsing, NP =N =N2 =0,

NP =0, N =0, MY =0, N =1, NP =0, NY =0,

NP =0, N =0, N =0, N =0, N2 =1, N =0,

NP =0, NP =0, N =0,N%=0,N? =0, N? =1,

where the parametd represents an arbitrary rotation about the d§()@, arbitrary in the
sense that it is not specified by the strain stateThe parametef represents an unspecified
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distributor; it and the six Kelvin modulh;,i = 1, ..., 6, are the seven parameters appearing
in the expression fo€ that are not determined by the strain sthte Since orthotropic sym-
metry has nine elastic coefficients, six Kelvin moduli and three distributors, only two of these
parameters are specified by the optimization with respect to the strainEstalde seven
parameters) and the six Kelvin moduliA;,i =1, ..., 6, are still arbitrary.

Substituting the basis (29) in (6) we obtain the following expressioit,for terms of the
strain state parametesisand 8 and the unspecified arbitrary parametérand the six Kelvin
moduliA;,i =1,...,6:

- A

ci1 ¢12 ¢z O
C12 Cx» ¢c23 O

C13 C3 ¢33 O

O O o o

=10 0 0 & ’ (30)
0 0 0 0 ¢s5 O
| 0 0 0 0 0 &e|
where
¢11 = A1(cosa sinB)? + A,(cosa cosB cosd + sina sing)?
+As(sina cosd — cosa cosp sind)?,
¢ = A1(sina sinB)? + Ap(cosa sind — sina cosp cosh)?
+A3(cosa cost + sina cosp sind)?,
¢33 = A1(c0SB)? + Ao(sinB cost)? + Az(sin B sinb)?,
C23 = —A1(cosBsing sina) — A, cosh sinB(cosa sind — sina CosB cosH)
+A3sinB cosf(cosa cosh + sina cosB singd), (32)

¢13 = A1(cospsingcosa) — A, cost sinB(sina Sinf + cosa CoSP Cosh)
+A3zsing sinf(sina cosd — cosa cosB sing),

¢1p = —Aqsina cosa(sing)?
+As(Sina sinf + cosa cospB cosh)(cosa Sind — sina CoSB cosh)
+Az(Sina cosH — CoSa COSB COSH) (COSw COSH + Sina cosP sing),

Cas = A4, Cs5 = As, Cop = As.

(b) Two of the three principal strains of the strain stateare equal.

The symmetries that admit a basﬁ’é") containing eigenvectors with two equal, and one
distinct, dilatational eigenmodes are tetragonal, trigonal, hexagonal (transverse isotropy), or-
thotropic, monoclinic and triclinic symmetry. We select the three greatest of these symmetries,
tetragonal, trigonal and hexagonal (transverse isotropy) for illustration. The eigenbases for
tetragonal and hexagonal (transverse isotropy) symmetries are coincident [7] and will be
considered first. These symmetries have the same eigenbases and are only distinguished by
different Kelvin moduli. The three-dimensional canonical material symmetry coordinate sys-
tem is taken as the three-dimensional principal coordinate system of the strain E&nsor
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The results described above for the case of three distinct principal strains is specialized to
the present situation by taking = —n/4 andé = 0. Thus, the basis for tetragonal and/or
hexagonal (transverse isotropy) is given by

. - sin - - . A

NP = NP = —ﬁﬂ . N’ =cosp, NP=0, NP =0 KNP=0

~ ~ COS, ~ . ~ N N

NP = NP = —ﬁ’g , NP =—sing, NP=0 ~NP=0 N?=0

A A 1 A A A A

N = NP = 7 N =0 NY=0 NZ=0 NZ=0 (32)

RO =0 RP—0 NP=0 AP=1 8P=0 F®=0,

NP =0 NY=0 NP=0 N =0 NT=0 N>=0

NO® —0 N®—0 N®—0 AN®—0 AN®—0 NO®—1

Substituting the basis (32) in (8) we have the following expression for the tetragonal symmetry
¢, in terms of the strain state paramegeand the unspecified Kelvin moduli;,i =1, ..., 6,

- A

C11 512 @13 0 0 0
612 611 613 O O O
i3 ¢13 ¢i3 0 0 O

t= , 33
0 0 0 ¢ O 0 (33)
0 0 0 O caa O

|0 0 0 0 0 G|
where
¢11 = éop = 3(A1(SINB)? + Ax(COSB)? + Ag),
¢33 = A1(COSB)? + Ax(sinB)?,
(34)

¢12 = 3(A1(SinB)® + A2(Cosp)® — Ag),

b = SN2PM A e Ae = A
13 — s 44 — €55 — 1})4, 66 — £\5.
2.2

The expression (33) for the tetragonal symmétngduces to that for hexagonal (transverse
isotropy) symmetry whefisg = ¢11 — 12, OF equivalently,As, = As.

We turn now to the case of trigonal symmetry, which also admits a tz)%;(éiscontaining
eigenvectors with two equal, and one distinct, dilatational eigenmodes. The first two eigen-
vectors in the basis for trigonal symmetry coincide with those for hexagonal symmetry; that is
the first two lines of (32). The other four depend upon an unspecified distributor here denoted

by y,
~3) £ (3 cosy
Ny = N =

Q) _ o g3 _ 73 _
N,” = siny, N7 =0, Ng’ =0,

NP =0,
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N N sin A A .
O = AW =22 A% —o0 &P =siny,

N
|
N

(35)

NP = siny, NP =cosy.

Substituting the basis (35) in (8) we arrive at the following expression for the trigonal sym-
metry ¢, in terms of the strain state paramegerthe unspecified distributor paramejeand

the unspecified Kelvin moduh;,i =1, ..., 6,
[C11 C12 C13  Cia 0 0 7
C12 (11 C13 —Cia 0 0
¢ ¢ ¢ 0 0 0
é _ A13 13 33 R ’ (36)
C14 —Ci4 0 C44 0 0
o 0 0 © Cas V2614
L O 0 0 0 2014 ¢é11— 012
where
¢in = S(A1(SIN)? + Ax(Cosp)? + 3(As(Cosy)? + Aa(siny)?)),
é12 = 3(A1(sinB)? + Az(cosB)? — 3(A3(Cosy)? + A4(siny)?)),
(37)

sSin28(A1 — A»)
272 ’

Sin2B8(As — Ag)
2 .

¢33 = A1(SiNB)? + Ap(cosp)?, ¢z =

Cas = A3(COSY)? + A4(sSiny)?, é1q=

(c) The three principal strains of the strain stiteare equal.

A strain state with three equal principal strains requires eigenmodes with three equal com-
ponents under the optimization process above. All symmetries admit aﬁl{ééntaining
eigenvectors with three equal components. Isotropic and cubic symmetry contain simple ei-
genmodes with three equal components. The eigenvectors for isotropic and cubic symmetry
are given in [7]. For lesser symmetries we may adjust the distributor eigenmodes to accom-
modate a strain state with three equal principal strains using the methods described above for
the other cases.

6. Discussion

The results outlined above represent an attempt to understand the effect of adaptive anisotropy
mechanisms that function in many materials. In natural materials such as plant and animal
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tissues and in man-made composites, the adaptive anisotropy mechanisms stem from active
sources. In geological materials and in ductile structural materials the adaptive anisotropy
mechanisms are due to passive, or reactive mechanisms. These ideas are considered in greater
detail in the discussion section of [14]. In the present paper we reported the pointwise optim-
ization of the material symmetry of an anisotropic elastic material with respect to fixed and
specified stress (or strain) states. The results were presented in the form of the elasticity (or
compliance) matrices that minimize the strain energy with respect to specified, but arbitrary,
stress (or strain) states.

These results may be extended in several directions not explicitly developed in the paper.
For example, in the case of designing a material symmetry for a strain state with three dis-
tinct principal strains it was shown that a material with orthotropic symmetry satisfied the
minimization criterion by specifying only two parameters influencing the nine distinct elastic
constants. This result may be extended to the case of designing a material symmetry for two
strain states with three distinct principal strains, but coincident principal directions, by spe-
cifying three parameters influencing the nine distinct elastic constants. In the case when only
two of the three principal strains of the design strain state are distinct, the trigonal symmetry
solution had an additional degree of distributor freedom that may be used in a similar way to
accommodate an additional strain state.

However, a typical solution to the general case outlined in Section 3 must be carried out
numerically. The matriX defined by (11) is calculated from the specified strain stﬁgés
and the weighing factor ig;, p; > 0,J = 1,2, 3,...n, assigned to each strain state. The
eigenvectors of this matrix are then calculated and compared with the form of the eigenvectors
for distinct anisotropic linear elastic symmetries (see [7]). The type of elastic symmetry and
the orientation of the canonical symmetry axis are determined by this calculation. The Kelvin
moduli, A;,i =1, ...,n,n < 6, and the unspecified distributors (if any) must be determined
by other design and/or manufacturing constraints.

In this regard, a comparison with the optimal structural design approach used in Bendsge
et al.[1, 2] is informative. While our result is a straightforward calculus problem, the global
optimal structural design approach attempts to introduce real world constraints into the for-
mulated problem. These cost constraints, while logical, are subjective and non-unique. Other
cost constraints will lead to other features in the form of the elasticity tensor of the optimized
material. It is possible that the paradox of [1] that required zero shear moduli in the optimized
material elasticity tensor could be avoided with the selection of a different constraint.
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Appendix A. Eigenmodes for the various linear elastic symmetries

In this section the eigenmodes of the various linear elastic symmetries will be summarized. The modes were
determined by Kelvin [3], Rychlewski [9], Mehrabadi and Cowin [5, 7] and Cowin and Mehrabadi [10].

We begin with the eigenmodes for cubic symmetry, and note that those for isotropic symmetry are a special
case. The eigenproblem (4) is expressed for cubic symmetry by using the representdatiarafonbic symmetry
coordinate system; thus,



40 S. C. Cowin and G. Yang

B Sy L Sy 0 0 0
&b b p b 0 0 0
cow_apo| SR G o 0 0
0 0 0 e A 0 0
0 0 0 e A 0
.0 0 0 0 0 &b A ]

The eigenvalues of (A1) are of multiplicity one, two and three and are given by

Cub _ ~Cub , »Cub Cub _ ~Cub _ »ACub Cub _ 2Cub
Aqy =¢1p teizs Az =C{1 — ¢z Aase =44
or
Cub _ .Cub Cub Cub _ .Cub_ .Cub Cub _ 5 .Cub
Aqy =cfp tefzs Aga =cil ¢z Aasse) =2cq

respectively, and a set of eigentensors of (A1) corresponding to these eigenvalues is

-1 0 0
1 1
NDCub _ = g N@Cub_ -~ -1 0],
V3 V6
0 0 2
-1 0 0 0 0 O
necw _ L5 4 g i NOCT I T .
V2 2
0 0 O 0O 1 O
o 0 1 0 1 O
1 1
NO®Cwb _ — g o o, NOCW_ - |1 o o],
V2 V2
1 0 O 0O 0 O

respectively.

(A2)

(A3)

Note that these eigentensors are independent of the elastic constants and therefore reflect simple

eigenmodes. These results for cubic symmetry readily reduce to those for isotropic symmetryﬁmeﬂ

Ty
of multiplicity one and five and are given by

Iso __ xlso ~lso Iso _ Also  also __ also
Aqy =011 262, A23456 =C11 — 12 = a4

— éle’b and Cub may be replaced by Iso in (Al) through (A3). The eigenvalues for isotropic symmetry are

(A4)

The eigenproblem (3) is expressed for tetragonal symmetry by using the representatiom dotetragonal

symmetry coordinate system; thus,

[efet—a oSt ot 0 0 0
st ft-a 8 0 0 0
@t ADR s s y-a 0 0 0
c — =
0 0 0 apet— A 0 0
~Tet
0 0 0 0 get—a 0
~Tet
|0 0 0 0 0 %A

(A5)
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The eigenvalues of (A5) are of multiplicity one, one, one, two and one and are given by

Tet Tet _ 1| aTet | ~Tet | ATeT ~Tet 2 ~Tet | ~Tet _ sTety2
Aqy Ay =3 [(011 +¢15 33 ):I:\/S(Cl3) + (1 + 615 —¢33) ]

(A6)
Tet _ aTet _ aTet Tet _ aTet Tet __ aTet
Agy=c11 —C12- D5 =C4> A = Cepe
respectively, and the first three eigentensors corresponding to the first three eigenvalues are
B %(co&x + sina) 0 0 T
NDTet _ 0 1 (cosa + sine) 0 :
L e
L 0 0 ﬁ(cow sina) |
B %(sina — Ccosw) 0 0 T
N@Tet — 0 %(sina — cosw) 0 , (A7)
1 .
L 0 0 ﬁ(cosa + sina) |
r1l
7 0 0
N@Tet _ 1 )
0 7 0
L O 0 0
respectively, where
~Tet , aTet _ aTet
Ci7 +Ci15 —¢C
tan 2 — (nl—zT%) (A8)
2/2g

The first two eigentensors are associated with distributor eigenmodes because of the dependence upon the elastic
constants through the angte This definition of the angle is twice the angler defined by Mehrabadi and Cowin
[7] in their Equation (5.11). The eigentensd&® Tet NOTet gand N(©)Tet coincide withN@Cub NGICUb gng
N(®Cub given by (A3).
In the case of trigonal symmetry the eigenproblem (3) is expressed by using the representatiom dor
trigonal symmetry coordinate system, thus

oa QA A o o [
B g A g o : %
) . ETI'i ETI’i éTl’i — A 0 0 0 Ng
(éTI'I _ Al)N _ 13 13 33 R =0
- o _eh 0 o A 0 0 Ny ’
14 14 13 . A .
0 0 0 0 o= A velh Ns
ATri ATri AT Y
. 0 0 0 0 Vet e —elf—a | | Ne |

(A9)
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The eigenvalues of (A9) are of multiplicity one, one, two and two and are given by

Al =3 [(@H + e+l + /8152 + @]f + ¢Tf - agg,j)z] ,

Al =3 [(@H + el + el — /8@ TH2 + @ff +eff - agg,j)z] ,
(A10)

Tri 1| ATri _ ATri ATTi ATri2 ATr _ ATri _ ATriN2
Aze =2 [(011 C1p T Ca0) + \/8(014) +(C11 — €12 —Cag) ] ;

Tri L) el gl aTriy ATriy2 ATri  ATri _ ATriy2
Aasy =3 |:(cll Cip +Cap) \/8(614) + (€17 — €15 — Cqn) i|

respectively. The first two eigenvalues are the same as those for tetragonal symmetry given by (A6), the associated
eigentensordl DT andN@T are given byNDTet and N@Tetjn (A7) and the value of the angte by (A8)
with the superscript Tet by the superscript Tri. The eigentensors corresponding to the other eigenvalues are

[ cosp 0 0 0 cosB sinpg
; 1 ; 1
N®Ti_ = | o0 _cosg sing | . NO®TT_ _— | cos 0 o |.
7 p B 73 15
0 sing 0 | L sing 0 0
(A11)
[ —sing 0 0 7 r 0 —sing  cospB
; 1 ; 1
VSR — 0 sing cosp | ,NOTH — _—_ | _ging 0 0
V2 ’ V2 ’
0 cosp (VI | cosp 0 0
where
ZﬁATri
tan2g = ————~ 14 (A12)

ATri _ ATriy”
(€11 — €12 —Caq)

The eigentensors and the eigenvalues for transversely isotropic or hexagonal symmetry are obtained from
those of trigonal symmetry by allowing the elastic const@{rjt to vanish and replacing the superscript Tri by
the superscript Hex. As in the case of trigonal symmetry, there are four distinct eigenvalues for transversely
isotropic or hexagonal symmetry. Two are associated with different dilatational modes and two of multiplicity 2
are associated with different isochoric modes. The two dilatational modes, being identical to those of tetragonal
or trigonal symmetry, are as described above or in the section on tetragonal symmetry. However, since the elastic
constantAI[lI and hence the angfedefined by (A12) vanishes, the third through sixth eigenvalues of (A10) reduce
to

Hex ~Hex  sHex Hex ~Hex
Age =C1 —C12-  Das =Cuyq - (A13)

The eigentensors are identical with those given by (A7) for tetragonal symmetry.

The details of the eigenmodes for the triclinic, monoclinic and orthotropic symmetries are not recorded here in
detail but may be found in [7] or [10]. Orthotropic symmetry has the three volume preserving sheaNHBHEs
NGOt andN®Ort that are identical ttlYCub, NG)CUbandN(BCUb respectively, given by (A3) as well as three
dilatational modes likeéN(DTet andN(@Tetn equation (A7). Monoclinic symmetry has the two isochoric modes
that are designated as, s&f2MoN andN(©Mon that are identical withN®CUb andN©CUP given by equation
(A3), as well as four dilatational modes. Triclinic symmetry has, in general, six dilatational modes, of which
nothing can be said.
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